Python Programming Modules Programs

YOU CAN FIND PROGRAMS BELLOW:

Matploatlib

P.1.Histogram.

Program:

from matplotlib import pyplot as plt 
  
# Y-axis values 
y = [10, 5, 8, 4] 
# x=[1,2,3,4]

  
# Function to plot histogram 
plt.hist(y) 
  
# Function to show the plot 
plt.show() 
Python

P.2.Scatter.

Program:

from matplotlib import pyplot as plt 
plt.scatter([1,2,3],[4,5,6])
plt.plot([1,2,3],[4,5,6])
plt.xlabel('Roll_No')
plt.ylabel('marks')
plt.title('Test')
plt.show()
Python

P.3.Pi.

Program:

from matplotlib import pyplot as plt 
x=[2,8,9,12]
a=['sleep','eat','dance','work']
color=['m','c','r','b']
plt.pie(x,
labels=a,
colors=color,
startangle=90,
shadow=True,
explode=(0,0,0.1,0))
plt.show()
Python

P.4.Bar.

Program:

from matplotlib import pyplot as plt 
from matplotlib import style as s
s.use("ggplot")
x=[1,2,6,7,9]
y=[3,8,6,1,3]
plt.bar(x,y)
plt.xlabel('Roll_No')
plt.ylabel('marks')
plt.title('Test')
plt.show()
Python

P.5.Dataframe use.

Program:

import pandas as pd 
import matplotlib.pyplot as plt 
x=['zeel','manan','deep','yesh','kamal']
y=[12,12,32,12,78]
z=[32,43,21,32,23]
df=pd.DataFrame({'name':x,'age':y,'m':z})
df.set_index('name',inplace=True)
print(df)
# plt.bar(x,y)
#comen way to do it
df.plot()
plt.title('Grap')
plt.xlabel('name')
plt.ylabel('age')
plt.show()
plt.legend()
Python

P.6.More than One grape .

Program:

from matplotlib import pyplot as plt 
plt.scatter([1,2,3],[4,5,6])
plt.subplot(211)
plt.subplot(221)
plt.plot([1,2,3],[4,5,6])
plt.xlabel('Roll_No')
plt.ylabel('marks')
plt.title('Test')
x=[2,8,9,12]
a=['sleep','eat','doing','dance']
color=['m','c','r','b']
plt.subplot(222)
plt.pie(x,
labels=a,
colors=color,
startangle=90,
shadow=True,
explode=(0,0,0.1,0))
plt.show()
Python

Program:

from datetime import*
x=datetime.now()#Give current date and time
print(x)
print(x.year)#we can give anything like year,date,time

print(x.strftime("%A"))
print(x.weekday())
x=datetime(2002,2,2,12,1,3)
print(x)
x=datetime.today()
print(x)
x1=timedelta(23,12,12,12,12,12)#class time delta(days: float=..., 
#seconds: float=..., microseconds: float=..., milliseconds: float=..., 
#minutes: float=..., hours: float=..., weeks: float=..., fold: int=...)
x2=timedelta(89,12,0,1,23,1)
x3=x1-x2
print(x1)
print(x2)
print(x2)
Python

Output:

2020-07-11 15:01:09.168505
2020
Saturday
5
2002-02-02 12:01:03
2020-07-11 15:01:09.170499
23 days, 12:12:12.012012
89 days, 1:23:12.001000
89 days, 1:23:12.001000
Terminal

Time

Program:

#help('time')#give all functionality of time module
import time as t
s=t.time()
print(t.ctime())#give current time
print(s)#Return the current time in seconds since the Epoch.

x=t.localtime(s)
print(x)#give time in stract method
print(t.mktime(x))#return second

#print(t.sleep(13.23))
z=t.asctime(x)#convert strac into UFT
print(z)

print(t.strftime('%m\%d\%y'))
#help(t.strftime)
Python

Output:

Sat Jul 11 15:04:01 2020
1594460041.997238
time.struct_time(tm_year=2020, tm_mon=7, tm_mday=11, tm_hour=15,
 tm_min=4, tm_sec=1, tm_wday=5, tm_yday=193, tm_isdst=0)
1594460041.0
Sat Jul 11 15:04:01 2020
07\11\20
Terminal

Numpy

P.1.Basic Array With Numpy

Program:

import numpy as np
s=np.array([1,2,3,4,4,5])
print(s)
print('Type is',s.dtype)
s=np.array(['zeel','prajapati','Anteryami'])
print(s)
print('Type is',s.dtype)
# i - integer
# b - boolean
# u - unsigned integer
# f - float
# c - complex float
# m - timedelta
# M - datetime
# O - object
# S - string
# U - Unicode string
# V - fixed chunk of memory for other type ( void )
s=np.array([1,2,3,4],dtype='S')#we can also give type for string
print(s)
print('Type is',s.dtype)
#onther way
arr = np.array([1.1, 2.1, 3.1])
print(arr.dtype)
newarr = arr.astype('i')

print(newarr)
print(newarr.dtype)

#copy vs view
s=np.array([1,2,3,5,4])
c=np.copy(s)
c[0]=42
print(s)
print(c)#copy do not change parent array
#view
s=np.array([1,2,3,5,4])
c=s.view()
c[0]=42
print(s)
print(c)#view also change parent array
Python

Output:

[1 2 3 4 4 5]
Type is int32
['zeel' 'prajapati' 'Anteryami']
Type is <U9
[b'1' b'2' b'3' b'4']
Type is |S1
float64
[1 2 3]
int32
[1 2 3 5 4]
[42  2  3  5  4]
[42  2  3  5  4]
[42  2  3  5  4]
Terminal

P.2.Indexing and silencing Array With Numpy

Program:

import numpy as np 
a=np.array([[1,2,3,4],[5,3,2,7]])
#basic.........................................
print(a)
print(np.ndim(a))
print(np.sum(a))
print(np.min(a))
print(np.max(a))
print(np.ravel(a))#ravel function convert any array into 1D array
#indexing and slicing of 2-d..................................
print('2-D ARRAY .................................')
print(a)
print(a[0:,2])#it will starts from 0 row and if end not define it will give all 
#the element at present at each row index 2
print(a[0:1,2])
print(a[0:1,1:3])#slicing,indexing...
print(a[0:,1:3])#slicing,indexing...
print(a[::-1])#print reverse
print(a[0,2])#it will give the value present at index 0,2
print(a[1,-1])#it like first element from last in array
print(a[1,1:3])#at row 1 give element between 1 to 3
#indexing of 1-d array.............................
print('1-D ARRAY..........................')
a=np.array([1,2,3,4,5,6,7,9])
print(a[0])
print(a[::-1])
print(a[-2])
print(a[2:])
print(a[2:6])
print(a[::2])#it will give the element at 2 index diif" positions
print(a[::3])#it will give the element at 3 index diif" position
print(a[1:5:2])#it will give number between 1 to 5 index with index difference of 2
Python

Output:

[[1 2 3 4]
 [5 3 2 7]]
2
27
1
7
[1 2 3 4 5 3 2 7]
2-D ARRAY .................................
[[1 2 3 4]
 [5 3 2 7]]
[3 2]
[3]
[[2 3]]
[[2 3]
 [3 2]]
[[5 3 2 7]
 [1 2 3 4]]
3
7
[3 2]
1-D ARRAY..........................
1
[9 7 6 5 4 3 2 1]
7
[3 4 5 6 7 9]
[3 4 5 6]
[1 3 5 7]
[1 4 7]
[2 4]
Terminal

P.3. Spacing of Array With Numpy

Program:

import numpy as np
a=np.array([[1,2,3,4,5],[7,6,5,3,2]])
b=np.array([[1,2,3,4,5],[1,2,1,2,1]])

sum=a+b
sub=a-b
mul=a*b
div=a/b #it do all operation element by element
print('sum=',sum)
print('div=',div)
print('mul=',mul)
print('sub=',sub)
# other 
x=np.array([1,2,3,4])
print('sin(x)=',np.sin(x))
print('cos(x)=',np.cos(x))
print('tan(x)=',np.tan(x))
print('sqrt=',np.sqrt(x))
print('log is', np.log(x))
print('e is', np.exp2(x))
print('e is', np.exp(x))
Python

Output:

sum= [[ 2  4  6  8 10]
 [ 8  8  6  5  3]]
div= [[1.  1.  1.  1.  1. ]
 [7.  3.  5.  1.5 2. ]]
mul= [[ 1  4  9 16 25]
 [ 7 12  5  6  2]]
sub= [[0 0 0 0 0]
 [6 4 4 1 1]]
sin(x)= [ 0.84147098  0.90929743  0.14112001 -0.7568025 ]
cos(x)= [ 0.54030231 -0.41614684 -0.9899925  -0.65364362]
tan(x)= [ 1.55740772 -2.18503986 -0.14254654  1.15782128]
sqrt= [1.         1.41421356 1.73205081 2.        ]
log is [0.         0.69314718 1.09861229 1.38629436]
e is [ 2.  4.  8. 16.]
e is [ 2.71828183  7.3890561  20.08553692 54.59815003]
Terminal

P.4. Operation on Array With Numpy

Program:

import numpy as np 
# s=np.array([[1, 2, 3],[1,2,3],[1,2,3],[1,2,3]], ndmin=4)#ndmin give the order of
# matrix as 4-D
# arr = np.array([1, 2, 3, 4], ndmin=5)
s=np.array([[1,2,3,4],[1,2,3,4]])
print(s)
print(s.shape)#it give current dimension of matrix 2x3
#respace
s=np.array([1,2,3,4])
print(s)
print(s.shape)
print(s.reshape(4,1))#remember 4*1==sizeof(s)
s=np.array([1,2,3,4,5,6,7,8])
print(s.reshape(2,2,2))
#combination
s=np.array([[1,2,3,4],[1,2,3,4]])
x=np.array([[2,2,3,4],[1,1,1,1]])
print(np.hstack((s,x)))#it move x beside of s
print(np.vstack((s,x)))#it move x at down of s
Python

Output:

[[1 2 3 4] 
 [1 2 3 4]]
(2, 4)
[1 2 3 4]
(4,)
[[1]
 [2]
 [3]
 [4]]
[[[1 2]
  [3 4]]

 [[5 6]
  [7 8]]]
[[1 2 3 4 2 2 3 4]
 [1 2 3 4 1 1 1 1]]
[[1 2 3 4]
 [1 2 3 4]
 [2 2 3 4]
 [1 1 1 1]]
Python

P.5. Basic Numpy

Program:

import numpy as np
#  1. An array object of arbitrary homogeneous items  
 # 2. Fast mathematical operations over arrays  
 # 3. Linear Algebra, Fourier Transforms, Random Number Generation 
 #2-d array
a=np.array([[1,2,3,4,5],[1,2,4,5,6]])
print(a)
print(type(a))#give type of array
print(np.__version__)#Give version of array
print(np.ndim(a))#give dimension of array
#0-D
a=np.array(23)
print('I am 0-d array',np.ndim(a))
#1-D
a=np.array([1,2,3,4,5])
print('I am 1-D array',np.ndim(a))
Python

Output:

[[1 2 3 4 5]
 [1 2 4 5 6]]
<class 'numpy.ndarray'>
1.19.0
2
I am 0-d array 0
I am 1-D array 1
Terminal

P.6.Numpy VS List.

Program:

import numpy as np
import time
#numpy vs list
# 1.numpy consume less memory then list
# 2. nummpy is more faster and more simple than list
s=range(100000)
t=time.time()
# print(list(s))
print('Time taken is for making list\n',(time.time()-t)*1000)
t=time.time()
s1=list(s)
s2=list(s)
s3=[(x,y) for x,y in zip(s1,s2)]#it do sum of list
print('time taken for sum of list \n',(time.time()-t)*1000)

#numpy
t=time.time()
s=100000
# print(np.arange(s))
print('Time taken is for making numpy\n',(time.time()-t)*1000)
t=time.time()
s1=np.arange(s)
s2=np.arange(s)
s3=s1+s2
print('time taken for sum of numpy\n',(time.time()-t)*1000)
Python

Output:

Time taken is for making list
 0.0
time taken for sum of list 
 23.93484115600586
Time taken is for making numpy
 0.0
time taken for sum of numpy
 7.97724723815918
Terminal

P.7.Numpy ALL IN One.

Program:

import numpy as np  
print('-----------------------creating Array And Indexing---------------------------')
# d=np.array([[[1,2,3,4,5,6],[21,22,23,24,25,26],[12,1,13,14,15,16]]])
#creating..............................................................
d=np.array([[1,2,3,4,5,6],[21,22,23,24,25,26],[12,1,13,14,15,16]])
print(d)
print(d[0:2,2])
# l=[1,2,3,4]
# print(l)
d=np.zeros(5)
print(d)
d=np.ones(6,dtype=int)#we can use dtype anywhere for mack over datatype
print(d)
d=np.empty(3)
print(d)
d=np.linspace(0,20,num=5)#num is basically show number of parts of 0 to 20
print(d)
a=np.array([[1,2,3,4,5,6,7,8],[1,2,3,4,3,1,3,2]])
b=np.nonzero(a<5)
print(b)
b=np.arange(3)
print('new=: ',a[a>=1])#print all the value in array greathearted then 1
print('new2=: ',b[b>1])#print all the value in array greathearted  then 1
print(a)

print('--------------------------------sort and connect-----------------------------')
#argsort, which is an indirect sort along a specified axis,..................
# lexsort, which is an indirect stable sort on multiple keys,
# searchsorted, which will find elements in a sorted array, and
# partition, which is a partial sort.
# To read more about sorting an array, see: sort.
d=np.array([3,2,1])
s=np.sort(d)
print(d)#return function give copy of stored array
print(s)
f=np.concatenate((d,s))
print(f)
a1=np.array([[1,2],[3,4]])
a2=np.array([[5,7],[3,4]])
d=np.vstack((a1,a2))
print(d)
d=np.hstack((a1,a2))
print(d)
print('-------------------------------Size,dime ,shape and re-shape-----------------')
d=np.array([[[1,2,3,4,5],
[1,2,3,4,2,]],
[[1,1,2,3,7],[2,5,4,7,4]]])
print(d)
print(d.ndim)
print(d.size)
print(d.shape)
print(np.ravel(d))
d=np.linspace(0,20,num=4,dtype=int)
print(d)
r=d.reshape(2,2)
print(r)
print('---------------------------------1-D TO 2-D To 3-D---------------------------')
a=np.arange(5)
print(a)
print(a.shape)
b=a[np.newaxis ,:]
print(b.shape)
print(b)
a=a[: ,np.newaxis]
print(a.shape)
print(a)
a=a[:,:,np.newaxis]
print(a.shape)
print(a)
print('-----------------------------copy and view-------------------')
a=np.array([[1,2,3,4,5],[3,2,3,4,1],[5,4,3,2,1]])
b=a
b[0]=12
print(a)
#or
b=a.view()
b=a
b[0]=13
print(a)
a=np.array([[1,2,3,4,5],[3,2,3,4,1],[5,4,3,2,1]])
b=a.copy()
b[0]=12
print(b)
print(a)
print('---------------------------operation-----------------------------')
a=np.array([[1,1,1,1],[2,2,2,2]])
b=np.array([[1,1,1,1],[2,2,2,2]])
print(a+b)
print(a-b)
print(a*b)
print(a/b)
print(a**b)
print(a//b)
print(a.sum())
# print(a.sum(axis=1))
print(a.min())
# print(a.min(axis=0))
print(a.max())
# print(a.max(axis=1))
print(a.sum(axis=1))
print(a.sum(axis=0))
print(a*2)
#You can do these arithmetic operations on matrices of different sizes, 
#but only if one matrix has only one column or one row. In this case, 
#NumPy will use its broadcast rules for the operation.


data = np.array([[1, 2], [3, 4], [5, 6]])
ones_row = np.array([[1, 1]])
print(data + ones_row)
# array([[2, 3],
#     #    [4, 5],
#        [6, 7]])

print('----------------redome-------------------')
rng = np.random.default_rng(0)
r=rng.random(3)
print(r)
print('------------------remove and Duplicates---------------')
a=np.array([[1,1,1,1],[2,2,2,2]])
d=np.unique(a)
print(d)
d=np.unique(a,return_index=True)
print(d)

print('----------------------Transpose and reverse-----------')
a=np.array([1,2,3,4])
d=a.transpose()
print(d)
a=np.array([[1,2,3,4,5],[1,2,3,4,2]])
d=a.transpose()
print(d)
d=np.flip(a)
print(d)
Python

Output:

-----------------------creating Array And Indexing---------------------------
[[ 1  2  3  4  5  6]
 [21 22 23 24 25 26]
 [12  1 13 14 15 16]]
[ 3 23]
[0. 0. 0. 0. 0.]
[1 1 1 1 1 1]
[4.94065646e-324 6.95245738e-310 6.95245738e-310]
[ 0.  5. 10. 15. 20.]
(array([0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int64), 
array([0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7], dtype=int64)) 
new=:  [1 2 3 4 5 6 7 8 1 2 3 4 3 1 3 2]
new2=:  [2]
[[1 2 3 4 5 6 7 8]
 [1 2 3 4 3 1 3 2]]
--------------------------------sort and connect-----------------------------
[3 2 1]
[1 2 3]
[3 2 1 1 2 3]
[[1 2]
 [3 4]
 [5 7]
 [3 4]]
[[1 2 5 7]
 [3 4 3 4]]
-------------------------------Size,dime ,shape and re-shape-----------------
[[[1 2 3 4 5]
  [1 2 3 4 2]]

 [[1 1 2 3 7]
  [2 5 4 7 4]]]
3
20
(2, 2, 5)
[1 2 3 4 5 1 2 3 4 2 1 1 2 3 7 2 5 4 7 4]
[ 0  6 13 20]
[[ 0  6]
 [13 20]]
---------------------------------1-D TO 2-D To 3-D---------------------------
[0 1 2 3 4]
(5,)
(1, 5)
[[0 1 2 3 4]]
(5, 1)
[[0]
 [1]
 [2]
 [3]
 [4]]
(5, 1, 1)
[[[0]]

 [[1]]

 [[2]]

 [[3]]

 [[4]]]
-----------------------------copy and view-------------------
[[12 12 12 12 12]
 [ 3  2  3  4  1]
 [ 5  4  3  2  1]]
[[13 13 13 13 13]
 [ 3  2  3  4  1]
 [ 5  4  3  2  1]]
[[12 12 12 12 12]
 [ 3  2  3  4  1]
 [ 5  4  3  2  1]]
[[1 2 3 4 5]
 [3 2 3 4 1]
 [5 4 3 2 1]]
---------------------------operation-----------------------------
[[2 2 2 2]
 [4 4 4 4]]
[[0 0 0 0]
 [0 0 0 0]]
[[1 1 1 1]
 [4 4 4 4]]
[[1. 1. 1. 1.]
 [1. 1. 1. 1.]]
[[1 1 1 1]
 [4 4 4 4]]
[[1 1 1 1]
 [1 1 1 1]]
12
1
2
[4 8]
[3 3 3 3]
[[2 2 2 2]
 [4 4 4 4]]
[[2 3]
 [4 5]
 [6 7]]
----------------redome-------------------
[0.63696169 0.26978671 0.04097352]
------------------remove and Duplicates---------------
[1 2]
(array([1, 2]), array([0, 4], dtype=int64))
----------------------Transpose and reverse-----------
[1 2 3 4]
[[1 1]
 [2 2]
 [3 3]
 [4 4]
 [5 2]]
[[2 4 3 2 1]
 [5 4 3 2 1]]
Terminal

Scipy

P.1. Special Functions in Scipy.

Program:

from scipy import special
#This module is use for dining power of something

s=special.exp10(2)#it like 10 to the power 2
print(s)
s=special.exp1(2)
print(s)
s=special.exp2(2)
print(s)
s=special.exp10(10)
print(s)
d=special.sindg(90)
print(d)
d=special.cosdg(90)
print(d)
Python

Output:

100.0
0.048900510708061125
4.0
10000000000.0
1.0
-0.0
Terminal

P.2.Find Integration by Scipy.

Program:

from scipy import integrate
# from scipy import special
# help(integrate)
#we the help of integration function we can calculate integration for function
i=integrate.quad(lambda x: x,0,1)
print(i)
i=integrate.quad(lambda x: 2**x+x/3,0,0)
print(i)
i=integrate.quad(lambda x: 2**x+x/3,0,1000)
print(i)
#duble integration
f=lambda x: 1
e=lambda x,y:x**2
g=lambda x: -1
i=integrate.dblquad(e,0,1,f,g)
print(i)
Python

Output:

(0.5, 5.551115123125783e-15)
(0.0, 0.0)
(1.5458601538574905e+301, 3.0934568083332783e+288)
(-0.6666666666666667, 7.401486830834377e-15)
Terminal

P.3.Reverce of Array with Scipy.

Program:

from scipy import linalg
import numpy as np
s=np.array([[1,2],[1,1]])
print(s)
d=linalg.inv(s)
print(f'Inverse of Matrix is \n {d}')
Python

Output:

[[1 2]
 [1 1]]
Inverse of Matrix is
 [[-1.  2.]
 [ 1. -1.]]
Terminal

Panadas

P.1. Creating Data-frame With panadas.

Program:

import pandas as pd 
d=pd.DataFrame({'name':['zeel','kamal','manan','yesh'],'age':[12,13,43,12]})
print(d)

d.set_index("age",inplace=True)
print(d)
Python

Output:

 name  age
0   zeel   12
1  kamal   13
2  manan   43
3   yesh   12
age  name
12    zeel
13   kamal
43   manan
12    yesh
Terminal

P.2. Head and Tail panadas.

Program:

import pandas as pd 
d={'Roll_no':[1,2,3,4,5,6],'Name':['zeel','manam','kamal','pokey','pann','bachu'],
'Age':[23,32,12,32,56,100]}
s=pd.DataFrame(d)
print(s)
print(s.head(2))
print(s.head(4))
print(s.tail(2))
print(s.tail(4))
Python

Output:

   Roll_no   Name  Age
0        1   zeel   23
1        2  manam   32
2        3  kamal   12
3        4  pokey   32
4        5   pann   56
5        6  bachu  100
   Roll_no   Name  Age
0        1   zeel   23
1        2  manam   32
   Roll_no   Name  Age
0        1   zeel   23
1        2  manam   32
2        3  kamal   12
3        4  pokey   32
   Roll_no   Name  Age
4        5   pann   56
5        6  bachu  100
   Roll_no   Name  Age
2        3  kamal   12
3        4  pokey   32
4        5   pann   56
5        6  bachu  100
Python

P.3. Head and Tail panadas.

Program:

import  pandas as  pd 
df1=pd.DataFrame({'name':['zeel','deep','kamal'],'age':[1,2,3]},index=[1,2,3])
df2=pd.DataFrame({'nik_name':['heel','peep','samal'],'age2':[12,12,34]},index=[1,2,3])
d=df1.join(df2)
print(d)
#remember
#1 join is not connect two data-frame
#2 we have so think that not column name are same in two data-frame
#connect
df1=pd.DataFrame({'name':['zeel','deep','kamal'],'age':[1,2,3],
'nik_name':['heel','peep','samal'],'age2':[12,12,34]},index=[1,2,3])
df2=pd.DataFrame({'nik_name':['heel','peep','samal'],'age2':[12,12,34]},index=[4,5,6])
d=pd.concat([df1,df2])
print(d)
Python

Output:

    name  age nik_name  age2
1   zeel    1     heel    12
2   deep    2     peep    12
3  kamal    3    samal    34
    name  age nik_name  age2
1   zeel  1.0     heel    12
2   deep  2.0     peep    12
3  kamal  3.0    samal    34
4    NaN  NaN     heel    12
5    NaN  NaN     peep    12
6    NaN  NaN    samal    34
Terminal

Json

P.1. Basic of json in python.

Program:

import json

# some JSON:
x =  '{ "name":"John", "age":30, "city":"New York"}'
# print(y["age"])
# The json. load() is used to read the JSON document from file and The json. 
#loads() is used to convert the JSON String document into the Python dictionary.
# parse x:
y = json.loads(x)
# the result is a Python dictionary:
print(y["age"])
x={
    "Name":"zeel",
    "leaning":['c','c++','java','python'],
    "play":"pubg",
    'istrue':True
}
f=json.dumps(x)
print(f)
Python

Output:

30
{"Name": "zeel", "leaning": ["c", "c++", "java", "python"], "play": "pubg", "istrue": true}
Terminal

Arpaser

P.1. Mack comundline Utility .

Program:

import argparse
import sys

def cls(args):
    if args.o=='add':
        return args.a+args.b
    elif args.o=='sub':
        return args.a-args.b
    elif args.o=='div':
        return args.a/args.b
    elif args.o=='mul':
        return args.a*args.b
    elif args.o=='power':
        return args.a**args.b
    else:
        return "ABC: Error"

if __name__=="__main__":
    parser=argparse.ArgumentParser()
    parser.add_argument("--a",type=float,default=1.0,help="Dem me")
    parser.add_argument("--b",type=float,default=1.0,help="Dem me")
    parser.add_argument("--o",type=str,default=1.0,help="Dem me")
    args=parser.parse_args()
    sys.stdout.write(str(cls(args)))

Python

Output:

C:\Users\Desktop\python\module.py\arpaser> python main.py --a 10 --b 20 --o add
30.0
Terminal

Pickle

P.1. Bsic of pickle.

Program:

import pickle
# f=bytes(12441)
# g=pickle.loads(f)
# print(g)
# list="zeel is best main in the world"
list=["zeel","anteryami","don","programmer"]
with open(r"C:\Users\Desktop\python\module.py\pikal\file.txt","wb") as f:
    pickle.dump(list,f)
with open(r"C:\Users\Desktop\python\module.py\pikal\file.txt","rb") as f:
    txt=pickle.load(f)
    print(txt)
Python

Output:

['zeel', 'anteryami', 'don', 'programmer']
Terminal

Blog Write By:zeel codder

People Also Read